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ABSTRACT A model is developed for the coexistence
and exclusion of species over a region of similar habitable
patches. Since the balance of local extinction and coloniza-
tion would leave some patches unoccupied even without
competitors, species may coexist even when all the patches
are the same. Regional competition coefficients are found
when species affect the local extinction or migration rates
of each other. Rare species can regulate each other and
even exclude other species completely.

Many environments have a patchy, island-like pattern of
occurrence. It is generally assumed that species that occur on
a small fraction of the available patches will have little effect
on each other because their co-occurrence would be an ex-
ceedingly rare event. However, we have recently obtained
evidence of competition between rare species. A group of
predaceous ants recorded by Gregg (1) in Colorado, all of
which are rare, showed a lower than expected microhabitat
overlap. MacArthur and Pianka (2) predicted reduced micro-
habitat overlap for 'searching' predators competing for the
same prey; our data seemed to confirm MacArthur and
Pianka's optimization model. The problem is not why the
ants reduced competition by the optimization proposed by
MacArthur and Pianka, but rather, how there could be any
significant competition to reduce. We will use an immigration-
extinction model developed by Levins (3, 4) for predicting
the number of islands, or island-like habitats, occupied by a
species, and we will allow competition to affect either the
migration or extinction rate. In contrast to traditional com-
petition theory, the focus of our attention will be on changes
in the number of populations of a species, rather than on the
sizes of the local populations.
We will first present the migration-extinction model for a

species in the absence of competitors, then the possibility of
significant competitive effects on a rare species by other
species, conditions for coexistence of two species, the effect of
environment on coexistence, and mechanisms for the avoid-
ance of competition. Finally, we will discuss situations where
the model might be applicable.

Let N be the number of local populations, T the total
number of sites, x the extinction rate per population, and m'
the rate of migration from one given site to another given
site. Then

This formulation assumes that the migration rate from one
patch to any other patch is the same. Letting p = NIT and
m = m'T makes the equation more manageable:

d= mp(l- p) - xp. (2)

At equilibrium:

p = 1 - x/m, (3)
which is the proportion of sites occupied in the absence of
competitors. For a rare species, a ten-fold change in p from
0.01 to 0.1 requires only about a 10% change in x/m, from
0.99 to 0.90. Finally, p is more sensitive to differences in the
parameters x and m if these are separately small:
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Thus, small differences in m and x can make one species
common and a species with a similar biology rare. A standard
explanation is that species are rare because suitable habitats
are rare. While this may be true for many situations, the
arguments above indicate that this is not necessarily the
case, and we are justified in looking for competition between
initially rare species.

COMPETITION AFFECTING EXTINCTION RATE

The simplest model for the effect of competition on extinction
rate is to let the extinction rate be xl when the second species
is present and xo when the second species is absent. Then

dp= mp(l - p) - p[x,q + xo(l- q)],dt (6)

where q is the proportion of sites occupied by the second
species. Rearrangement yields an equation of the familiar
form

dNt
dt= r1Ni(K, -N1-dN

dN = m'N(T - N) - XN.
dt (1)

dp F XO (xi-xo0 1
dt mp L mP- mr) .

At equilibrium:
XO i - jq.
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Thus, 1 - - is the K of the logistic form and is a.
m m

We prefer to define aja in the community matrix (5) as

which is a more general definition than is usually assigned to
a. For the model we are considering

-a _xm- X0
ap m (9)

Let us now consider under what conditions one species can
exclude another from a region. From Eq. (8), we see that for
P°

m-x0 2m+x0
q> X orxi q - (10)

For example, if the resident species (q) occurs in 0.01 of the
available patches, and the invading species (p) would occur
in 0.01 of the available patches if q were absent, xi must be
approximately 2.01 for invasion by p to be impossible. Thus,
one rare species can exclude another rare species from a
region. The usual explanation for allopatry, particularly of
rare species, is that there has not been sufficient time for the
species to reinvade the area where the other closely related
species occurs. However, the above arguments indicate that
competitive exclusion may be important.
Two species can coexist when the product al2a2l is less

than one. In the symmetric case (3 = q), this reduces to:

m > Xi X0, (11)

For rare species, m xo, and so xi cannot be more than two
times xD.

Migration rate depends primarily on the distance between
patches (3), whereas the extinction rate depends upon local
conditions. Therefore, we are justified in looking at the
effect on coexistence of increasing extinction rates while the
migration rate is held constant, and of decreasing migration
rate while the extinction rates are held constant. If xo is in-
creased, then the most reasonable form is that xi also in-
creases by the same amount. Let this increase be a. Then

xl + a-(xo + a) _ x1-xO
a = m m

If the increase is multiplicative

a(xi - xo) x1-o
at = m >

m m

(12)

At equilibrium:

P =
o {X

- -(q- q

The sensitivity of p to changes in 0 is

= q Xi Xo

By comparison, the sensitivity of p to reduction in xi is

a m

(15)

(16)

(17)

If xi - x0 is less than 1.0, reduction in xi will be more effective
than increasing 0. Of course, a species may not be able to
reduce xi, and increasing 0 may be the only possible strategy.
We can relate the rate of extinction (xi or x0) at any par-

ticular site to stability of the local community matrix at least
in a qualitative way. The rate of return to equilibrium of the
community matrix depends upon the separate eigenvalues of
the matrix, but the rate of return in a fluctuating environ-
ment depends on the product of the eigenvalues; the faster
the rate of return, the more stable to community. On the
other hand, the higher the extinction rate, the more unstable
is the community. Since the determinant is equal to the
product of the eigenvalues, a large determinant should indi-
cate low extinction rates for the species involved and vice
versa.

COMPETITION AFFECTING MIGRATION RATE

By an analogous procedure for competition affecting extinc-
tion rate, we let the migration rate be ml when the second
species is present, and mo when the second species is absent.
The most reasonable interpretation of ml and m0 is that they
are the rate of 'successful' migration. Of course, 'successful'
migration is difficult to define (5), but the essential point is
that the model allows for the effect of residence on a site by
another species. One possible definition of successful migration
is one where the propagules reproduce at least once. The rate
of change of p is

dpd= p(l - p) [miq + mo( - q) ] - xp. (18)

At equilibrium:

x

P5= 1- qml+ mo(1 - q)(13)

which decreases the likelihood of cooccurrence. Reduction in
migration rate, i.e., increase of patch distance, also increases
a. Since increase of environmental severity probably acts in
an additive way, changes in distance between patches prob-
ably affect a, and thus the alternatives of allopatry and sym-
patry, more strongly.
Two possible evolutionary responses by a species faced

with competition acting on extinction rate are to avoid
patches where the second species is present or to reduce xi.
Let 0 be the probability that species p avoids a patch where
species q is present. Then Eq. (6) becomes

dpd= mp(l - p) - p[xi(q - Oq) + xo(l- q + Oq)]. (14)

(19)

and a is

_p_ (MO- mI)x
bq [q(ml - mo) + moI2' (20)

Note that a is not a constant, but depends on the value of q.
Let us now consider under what conditions one species can

exclude another species from a region. From Eq. (19), we see
that for p = 0

q 2
- x

M - Ml
(21)

If the resident species (q) occurs in 0.01 of the available
patches, and the invading species (p) would occur in 0.01 of
the available patches if q were absent, ml must be 0.0 for
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invasion by p to be impossible. Thus, migration competition
is not as effective as extinction competition for exclusion of
one rare species by another rare species.
The competition coefficient, a, can be written in the follow-

ing way:

(ml-O- mI (1 -P). (22)
(inl - me)q + m0

In the symmetric case (i = q), a must be less than one, and
Eq. (22) reduces to

MO
MO >1 (23)

me-mi

in the stable case. If ml $ 0, Eq. (23) always holds. When
ml = 0, a equals one even for asymmetric cases. Eq. (22) be-
comes

apq = (1 - ) I q)]' (24)

so the product apqaqp = 1. Thus, exclusion occurs only when
ml = 0, and sympatry is possible in all other cases. An in-
crease in local extinction rate decreases p and increases a,
but not enough to prevent sympatry. Reduction in ml has a
similar effect.

In a similar manner to the analysis of extinction competi-
tion, a species can avoid patches where q is present, or evolve
to reduce m1. By analogy to (14):

dp = (l-p)[ml(q-6q) + mO(1-q + 0q) xp. (25)
dt

The sensitivity of A to changes in 6 is

up = x(mo-mi) (26)
bo [(q - Oq)(ml - me) + MO]2

Similarly, the sensitivity of 0 to reduction in ml is

_p_ qx
=m, [q(ml-me) + mO]2 (27)

In general, for low values of 6, a reduction in ml would be
more effective in reducing competition.
Although we have discussed the model mainly in the con-

text of competition between rare species in relatively large
areas, we believe that the model applies, at least potentially,
to many situations. The model may apply to two kinds of
patchy environments: ones in which any patch contains a
small fraction of the species able to live in the patch, and ones
in which a species occupies a small fraction of the habitable
patches. An example of the first case is aquatic insect nymphs
living in various microhabitats of freshwater streams. An
example of the second case is a group of parasites utilizing
the same vertebrate species as host.

Additional theoretical developments are also necessary.
We have not discussed the n-species case, because this would
require specifying the extinction rates Xk for communities
with K species present and calculating the frequencies of
local communities with K species. A general treatment is
formidable mathematically, yet we do not now have a reason-
able basis for the addition of simplifying assumptions.
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